The molecular basis of aerobic metabolic remodeling differs between oxidative muscle and liver of threespine sticklebacks in response to cold acclimation.
نویسندگان
چکیده
We sought to determine the molecular basis of elevations in aerobic metabolic capacity in the oxidative muscle and liver of Gasterosteus aculeatus in response to cold acclimation. Fishes were cold- or warm-acclimated for 9 wk and harvested on days 1, 2, and 3 and weeks 1, 4, and 9 of cold acclimation at 8 degrees C, and on day 1 and week 9 of warm acclimation at 20 degrees C. Mitochondrial volume density was quantified using transmission electron microscopy and stereological techniques in warm- and cold-acclimated fishes harvested after 9 wk at 20 or 8 degrees C. Changes in aerobic metabolic capacity were assessed by measuring the maximal activity of citrate synthase (CS) and cytochrome-c oxidase (COX) in fishes harvested throughout the acclimation period. Transcript levels of the aerobic metabolic genes CS, COXIII, and COXIV, and known regulators of mitochondrial biogenesis, including peroxisome proliferator-activated receptor-gamma coactivators-1alpha and -1beta (PGC-1alpha and PGC-1beta), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor-A were measured in fishes harvested throughout the acclimation period using quantitative real-time PCR. The maximal activities of CS and COX increased in response to cold acclimation in both tissues, but mitochondrial volume density only increased in oxidative muscle (P < 0.05). The time course for changes in aerobic metabolic capacity differed between liver and muscle. The expression of CS increased within 1 wk of cold acclimation in liver and was correlated with an increase in mRNA levels of NRF-1 and PGC-1beta. Transcript levels of aerobic metabolic genes increased later in oxidative muscle, between weeks 4 and 9 of cold acclimation and were correlated with an increase in mRNA levels of NRF-1 and PGC-1alpha. These results show that aerobic metabolic remodeling differs between liver and muscle in response to cold acclimation and may be triggered by different stimuli.
منابع مشابه
Oxidative stress is transient and tissue specific during cold acclimation of threespine stickleback.
Linkages between cold acclimation and oxidative stress in fishes are unclear and contradictory results have been published. We sought to determine whether oxidative stress occurs during cold acclimation of threespine stickleback (Gasterosteus aculeatus), and, if so, when it occurs and whether it varies among tissues. Fish were warm (20°C) or cold (8°C) acclimated for 9 weeks, and harvested duri...
متن کاملRegulatory role of PGC-1α/PPAR signaling in skeletal muscle metabolic recruitment during cold acclimation.
This study examined the molecular basis of energy-related regulatory mechanisms underlying metabolic recruitment of skeletal muscle during cold acclimation and possible involvement of the l-arginine/nitric oxide-producing pathway. Rats exposed to cold (4±1°C) for periods of 1, 3, 7, 12, 21 and 45 days were divided into three groups: untreated, l-arginine treated and N(ω)-nitro-l-arginine methyl...
متن کاملElevated temperature and PCO2 shift metabolic pathways in differentially oxidative tissues of Notothenia rossii.
Mitochondrial plasticity plays a central role in setting the capacity for acclimation of aerobic metabolism in ectotherms in response to environmental changes. We still lack a clear picture if and to what extent the energy metabolism and mitochondrial enzymes of Antarctic fish can compensate for changing temperatures or PCO2 and whether capacities for compensation differ between tissues. We the...
متن کاملChronic cold exposure increases liver oxidative capacity in the marsupial Monodelphis domestica.
Marsupials lack brown adipose tissue, and therefore rely exclusively on other tissues for thermogenesis. To determine the magnitude of phenotypic plasticity of the liver in response to changing metabolic demand, gray short-tailed opossums (M. domestica) were exposed to thermoneutral (28 degrees C) or cold (9-12 degrees C) conditions continuously for 6 weeks. Half of each group was also enduranc...
متن کاملCold-acclimation-induced non-shivering thermogenesis in birds is associated with upregulation of avian UCP but not with innate uncoupling or altered ATP efficiency.
Despite their lack of brown adipose tissue, some bird species develop regulatory non-shivering thermogenesis (NST) of skeletal muscle origin in response to cold acclimation. Mechanisms involved in avian NST are still unclear but may involve reduced energetic coupling in skeletal muscle mitochondria through the expression of an avian homologue of mammalian uncoupling proteins. The aim of this wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 299 1 شماره
صفحات -
تاریخ انتشار 2010